主分量分析 principle component analysis ; PCA ; Robust KPCA ; PRINCOMP
核主分量分析 KPCA ; Kernel PCA ; Kernel Principal Component Analysis
模糊主分量分析 FPCA
非线性主分量分析 NPCA
模块主分量分析 M PCA ; modular PCA
主分量分析神经网络 PCANN ; PCA neural networks
粗糙主分量分析法 Rough PCA
PCA主分量分析 Primary component analyze
子模式主分量分析 Subpattern-based PCA ; SPPCA
增量减量主元分析 IDPCA
用主量分析(PCA)方法进行特征抽取,RS方法对特征信息进行预处理,约简后的特征作为网络输入,构成车牌字符识别网络。
Feature information is gathered with PCA, and it is preprocessed with RS way. Reduced feature is used as input of neural network, recognition network is composed with it.
传统的特征提取方法主要有:主分量分析、奇异值分解、投影追踪、自组织映射等。
Classical feature extraction methods include: Principle Component Analysis, Singular Value Decomposition, Projection Pursuit, Self-Organizing Map, and so on.
提出了一种基于主分量分析和属性距离和的孤立点检测算法。
An outlier detection algorithm based on principal component analysis and the sum of attributes distance is proposed.
应用推荐