• So, which orbital would we take an electron out of if we were ionizing this atom here?

    那么,如果我们要电离这个原子,应该拿走那个轨道上的电子?

    麻省理工公开课 - 化学原理课程节选

  • For example,I could look at the ionization of lithium.

    例如,我能观察锂的电离

    麻省理工公开课 - 固态化学导论课程节选

  • The reason it's aluminum is because aluminum has a lower z effective, so it's not being pulled in as tightly by the nucleus, and if it's not being pulled in as tightly, you're going to have to put in less energy in order to ionize it, so that's why it's actually going to have the smaller ionization energy.

    原因是,铝的有效核电量更少,所以没有被原子核束缚得更紧,而如果没有被束缚得更紧,你为了电离它所需要注入的能量也就更少,这就是,它的电离能会更低的原因。

    麻省理工公开课 - 化学原理课程节选

  • So you don't want to put in a negative energy, that's not going to help you out, you need to put in positive energy to get an electron out of the system. So that's why you'll find binding energies are always negative, and ionization energies are always going to be positive, or you could look at the equation and see it from there as well.

    因为这对电离没有帮助,你需要一个正的能量,使得电子脱离这个系统,这就是为什么你会发现,结合能总是负的而电离能总是正的,或者你们看这个方程也可以发现这一点。

    麻省理工公开课 - 化学原理课程节选

  • So we are really looking at this reaction here H+ for ionization. It is H gas neutral goes to H plus in the gas phase plus the electron. And, furthermore, we can have multiple ionization energies.

    所以我们真正看到的是,电离,它是在气相中H变为,和电子的过程,还有,我们能电离能加倍。

    麻省理工公开课 - 固态化学导论课程节选

  • So, if, for example, we were looking at a hydrogen atom in the case where we have the n equals 1 state, so the electron is in that ground state, the ionization energy, it makes sense, is going to be the difference between the ground state and the energy it takes to be a free electron.

    电离氢原子所需要的能量,如果我们看n等于1的情况,电子在基态,那电离能,很合理的就是基态,和自由电子态的能量差。

    麻省理工公开课 - 化学原理课程节选

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定