• So we can't actually see any of that, it's too high energy for us to see. So everything we see is going to be where we have the final energy state being n equals 2.

    所以我们是看不见它的,它能量太高了,我们能看见的,都是终态等于2的情况。

    麻省理工公开课 - 化学原理课程节选

  • So we have four choices in terms of initial and final energy levels, and also what it means - in terms of the electron -- whether it's gaining energy or whether it's going to be emitting energy?

    我们有这四个选项,各有不同的初始能量和末能量,它都是按照电子来说的,不管是失去能量还是得到能量?

    麻省理工公开课 - 化学原理课程节选

  • The sum of path number 2 and path number 3 get me to the same place, so the energy change by going through this time path, this intermediate point here back all the way to final state should be the same the red path.

    而经过路径2和3可以3,到达同样的末态,因此经过路径,2和3带来的能量的变化,与路径1带来的,能量变化相同。

    麻省理工公开课 - 热力学与动力学课程节选

  • So, if we start instead with talking about the energy levels, we can relate these to frequency, because we already said that frequency is related to, or it's equal to the initial energy level here minus the final energy level there over Planck's constant to get us to frequency.

    如果我们从讨论能级开始,我们可以联系到频率上,因为我们说过频率和能量相关,或者说等于初始能量,减去末态能量除以普朗克常数。

    麻省理工公开课 - 化学原理课程节选

  • So this delta energy here is very simply the energy of the initial state minus the energy of the final state.

    很简单的,这个能量差等于,初始能量减去末能量。

    麻省理工公开课 - 化学原理课程节选

  • Absorption is just the opposite of emission, so instead of starting at a high energy level and dropping down, when we absorb light we start low and we absorb energy to bring ourselves up to an n final that's higher.

    吸收就是发射的逆过程,与从一个高能量到低能量不同,当吸收光时,我们从低能量开始,吸收能量到一个更高的能量。

    麻省理工公开课 - 化学原理课程节选

  • And let's look at the final kinetic energy that we'd observe in this spectrum, which is 384 electron volts, so what is that third corresponding ionization energy?

    然后让我们来看一下,在光谱中观测到的,最后一种动能,它大小是,384,电子伏,那么这相应的第三种电离能是多大?

    麻省理工公开课 - 化学原理课程节选

  • So this is our final equation, and this is actually called the Balmer series, which was named after Balmer, and this tells us the frequency of any of the lights where we start with an electron in some higher energy level and we drop down to an n final that's equal to 2.

    把2代入到这里,所以得到1除以,这就是我们最终的方程,这叫做Balmer系,以Balmer名字命名的,它告诉我们从高能级掉到n等于2的,最终能级所发出光的频率。

    麻省理工公开课 - 化学原理课程节选

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定