• The small-data method is improved by false nearest neighbor method calculating embedding dimension.

    通过虚假临界点计算嵌入维数可以使小数据量法更加完善。

    youdao

  • In phase space reconstruction of time sequences, the selection of embedding dimension is important.

    嵌入时间序列空间重构中的基本参数。

    youdao

  • The minimum embedding dimension of reconstruction is confirmed by the false nearest neighbours method.

    利用最邻近点法确定相空间重构最小嵌入数。

    youdao

  • Based on local linear prediction model of chaotic time series, short-term load forecasting method on multi-embedding dimension is presented.

    基于混沌时间序列局域线性预测模型提出了嵌入短期负荷预测方法

    youdao

  • The relationship of embedding dimension and delay time is discussed and a new concept namely the generalized embedding Windows is put forward.

    论述相空间重构中延迟时间嵌入维数之间关系提出广义嵌入长的概念

    youdao

  • Algorithms for searching the optimal embedding dimension and interval prediction are presented, which can be applied in practice with satisfactory.

    讨论混沌时间序列的区间预测给出嵌入数的搜索算法区间预测算法,应用于实例,取得较好效果。

    youdao

  • By phase space reconstruction, choosing the most suitable delay time and embedding dimension in order to embed time series which reflect the demanding into the phase space.

    通过空间重构技术选取合适延迟时间嵌入维数,将反映市场需求的时间序列嵌入相空间中。

    youdao

  • Based on the idea of looking at the behavior of near neighbors under changes in the reconstruction dimension, a new method to determine the proper minimum embedding dimension is constructed.

    本文基于“增大重构减少虚邻点思想,构造了合适最小嵌入维的方法

    youdao

  • Recognition rate is superior to the traditional PCA algorithm. Finally experiments analyze the relationship between neighbor K and the embedding dimension of algorithms SLLE to the recognition rate.

    最后实验分析SLLE算法近邻K嵌入识别率影响,得到了SLLE算法近邻数K和低维嵌入维数。

    youdao

  • The results of actual runoff prediction show that the proposed method could use information synthetically in multi-dimension embedding phase spaces, and effectively improve the prediction accuracy.

    实例分析表明,相对于单嵌入维数,多嵌入维数组合预测方法可以综合利用不同空间中的有用信息提高径流时间序列预测的精度

    youdao

  • The results of actual runoff prediction show that the proposed method could use information synthetically in multi-dimension embedding phase spaces, and effectively improve the prediction accuracy.

    实例分析表明,相对于单嵌入维数,多嵌入维数组合预测方法可以综合利用不同空间中的有用信息提高径流时间序列预测的精度

    youdao

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定