用解析法设计函数生成机构,要解决的关键问题是两连架杆位置方程式的求解。
The key problem to be solved in establishing function resultant mechanism by analytic method is to calculate the equation of two connected rod clevis.
提出了转向机构连架杆最大位移的概念和计算步骤以及转向机构运动学计算方法。
The concept and calculation steps of maximum displacements of side bars for the steering linkages and the kinematic calculation method are also provided.
利用转化机架法,将按预定连架杆构件位置的四杆机构设计问题,转化为按预定连杆位置设计四杆机构问题。
In this paper, an analytic method to design the plane four-bar linkage mechanism according to three predetermined locations of framed link is introduced.
根据以机构极端位置建模导出的曲柄存在条件,应用机架变换法导出了两自由度铰链五杆机构(不论连架杆是否为主动件)的全部类型。
According to the condition of crank existence, all types of 5-bar linkage with 2-degree of freedom are synthesized by linkage mould in extreme position.
本文以两曲柄分别为连架杆和连杆的一类混合输入五杆机构作为研究对象,围绕此机构对混合驱动可控机构的结构学、运动学和优化综合问题进行了研究。
Under the condition of no singular position and satisfying requirement of hybrid drive, it analyzes the boundary curve construction and feature of the three types of hybrid input five bar mechanism.
本文以两曲柄分别为连架杆和连杆的一类混合输入五杆机构作为研究对象,围绕此机构对混合驱动可控机构的结构学、运动学和优化综合问题进行了研究。
Under the condition of no singular position and satisfying requirement of hybrid drive, it analyzes the boundary curve construction and feature of the three types of hybrid input five bar mechanism.
应用推荐