应用能量积分法建造了一个李亚普诺夫函数。
Lyapunov function is established by using energy integral method.
并利用离散李亚普诺夫函数法导出系统稳定的条件。
The stability conditions are derived using a discrete Lya-punov function.
定义了李亚普诺夫函数,根据其稳定性理论确定了速度自适应律。
The speed adaptive scheme of speed estimation is obtain utilizing Lyapunov's stability theory.
利用李亚普诺夫函数分析了误差系统的稳定性,说明误差是指数收敛的。
The stability of the error system is analyzed by a Lyapunov function, which shows that the errors are exponential convergent.
选择一正定的李亚普诺夫函数,基于李亚普诺夫直接法求出混沌同步的控制量。
The Control for chaotic synchronization is directly designed based on lyapunov's direct method by choosing a positive definite lyapunov function.
采用多李亚普诺夫函数方法设计控制器的切换律,系统在此切换律下可以达到渐近稳定。
Multiple Lyapunov functions method is introduced to design the switching law between controllers, the system is asymptotically stable under the switching law.
本文的目的是叙述构造矢量李亚普诺夫函数的方法和应用于线性与非线性复合系统的稳定性分析。
This article is intended to develop a method for constructing Vector Lyapunov functions and the application to the stability analysis of linear and nonlinear composite systems.
当一个生成三角波的回路同步失稳时,利用李亚普诺夫函数可以很容易证明系统实际上处于混沌态。
Using the Lyapunov exponent, writers can simply show the chaotic behavior when a circuit oscillating in triangular waveform is off synchronization.
通过构造特殊的李亚普诺夫函数,分别考虑了时滞相关和时滞无关两种情形,得到了系统鲁棒绝对稳定的充分条件。
Via the constructive Lyapunuov function, the case independent of delay and dependent of delay is investigated respectively, and the sufficient conditions of robust absolute stability are gained.
该控制器对系统各通道进行分散式控制,利用李亚普诺夫函数的确定过程求解各自适应参数表达式,以保证了系统的稳定性。
The decentralized adaptive controller is designed and the adaptive parameters are decided by the Lyapunov function in order to assure the system is stable.
基于随机李亚普诺夫函数的方法,并结合线性矩阵不等式,分别提出依赖于模态的状态反馈和输出反馈控制,以保证相应闭环系统的严格正实性。
Based on stochastic Lyapunov functional approach, both state and output-feedback mode-dependent controllers are proposed to guarantee the strict positive realness of the resulting closed-loop systems.
基于随机李亚普诺夫函数的方法,并结合线性矩阵不等式,分别提出依赖于模态的状态反馈和输出反馈控制,以保证相应闭环系统的严格正实性。
Based on stochastic Lyapunov functional approach, both state and output-feedback mode-dependent controllers are proposed to guarantee the strict positive realness of the resulting closed-loop systems.
应用推荐