戴德金分割 百科内容来自于: 百度百科

简介

由无理数引发的数学危机一直延续到19世纪。直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数,并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机。

案例

例如,若是由满足的一切正有理数组成,是由一切其余的有理数组成,则既不存在的最大元素,也不存在的最小元素,因为不存在有理数使得.戴德金说;每当我们考虑一个不是由有理数产生的分割时,就得到一个新数即无理数,我们认为这个数是由分割完全确定的.
因此,戴德金就把一切实数组成的集合定义为有理数集的一切分割,而一个实数就是一个分割.
  在这一定义中,由一个给定的有理数产生的两个实质上等价的分割(视是的最大元素还是的最小元素而定)被看成是同一的.

函数解析

在解析函数中,对实数定义大意是,先从自然数出发定义正有理数,然后通过无穷多个有理数的集合来定义实数;
戴德金把这种划分定义为有理数的一个分割,记为(A,B)。因为不存在有理数X使得X的平方等于2,戴德金说,考虑一个不是由有理数产生的分割(A,B)时,就得到一个新数,即无理数a,这个数是由分割(A,B)完全确定的。
因此,戴德金就把一切实数组成的集合R定义为有理数集的一切分割,而一个实数a就是一个分割(A,B)。在这一定义中,由一个给定的有理数r产生的两个实质上等价的分割被看成是同一的。

假设给定某种方法

所有的有理数分为两个集合,A和B, A中的每一个元素都小于B中的每一个元素,任何一种分类方法称为有理数的一个 分割
对于任一分割, 必有3种可能, 其中有且只有1种成立:
A有一个最大元素a,B没有最小元素。例如A是所有≤1的有理数,B是所有>1的有理数。 B有一个最小元素b,A没有最大元素。例如A是所有<1的有理数。B是所有≥1的有理数。 A没有最大元素,B也没有最小元素。例如A是所有负的有理数,零和平方小于2的正有理数,B是所有平方大于2的正有理数。显然A和B的并集是所有的有理数,因为平方等于2的数不是有理数。注::A有最大元素a,且B有最小元素b是不可能的,因为这样就有一个有理数不存在于A和B两个集合中,与A和B的并集是所有的有理数矛盾。
第3种情况,戴德金称这个分割为定义了一个无理数,或者简单的说这个分割是一个无理数。
前面2种情况中,分割是有理数。
这样,所有可能的分割构成了数轴上的每一个点,既有有理数,又有无理数,统称实数。

成就及影响

戴德金的主要成就是在代数理论方面。他研究过任意域、环、群、结构及模等问题,并在授课时率先引入了环(域)的概念,并给理想子环下了一般定义,提出了能和自己的真子集建立一对应的集合是无穷集的思想。在研究理想子环理论过程中,他将序集(置换群)的概念用抽象群的概念来取代,并且用一种比较普通的公式(戴德金分割概念)表示出来,比康托尔的公式要简化得多,并直接影响了后来皮亚诺的自然数公理的诞生。是最早对实数理论提出了许多论据的数学家之一。
戴德金在数学上有很多新发现。不少概念和定理以他的名字命名。他的主要贡献有以下两个方面:在实数和连续性理论方面,他提出“戴德金分割”,给出了无理数及连续性的纯算术的定义。
$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定