四参数正弦波拟合法是一种在精密测量中广泛使用的数学手段。
Sinusoid curve fit is a very useful method in precise measurement, based on the modeling measurement.
各种参数估值方法的比较表明,时间域最小二乘拟合法较为精确。
The comparison among various methods of parameter estimation shows that the least-squares fitting method in the time domain is more accurate one.
通过分析MOS管在饱和区失配因素,优化MOS管失配模型,提出用最小二乘曲线拟合法进行相关模型参数提取。
The factors of MOS transistor in the saturation region are analyzed, the mismatch models are optimized, and the model parameter extraction is done by least squares curve fitting method.
提出了一种基于曲线拟合法求取图像中不规则边界圆的参数求取方法。
A new algorithms for parameters of an image irregular boundary circle parameters is presented, which is based on Curve-Approximate Method.
传统的实测曲线拟合法对土模型参数的反演采用人工试凑的方法,效率低,且需要有一定工程经验的专业人员来操作。
Traditional signal matching analysis adjusting parameters of soil model uses manual way which has a fault of low efficiency and need the professional who processes engineering experience.
由导纳圆拟合法识别出了桥梁的模态参数。
The latter identified the modal parameters of the bridge by admittance circle fitting method.
在此基础上,介绍了由频响数据识别复模态参数的导纳圆拟合法。
On this basis, the mobility circle fitting method for identifying the complex modal parameters from frequency response data is discussed.
反馈部分为参数自调整模糊控制器,终点的计算采用二次曲线拟合法。
Feedback control is a parameter self tuning fuzzy controller and the burn through point is calculated by quadratic curve method.
最后,提出了三种方法对模型进行校验,分别是指标对比法、参数对比法、曲线拟合法。
Finally, three methods have been proposed for model calibration, namely, index comparison, parameter comparison and curve fitting.
将自由参数摄动法与样条函数拟合法结合起来,研究了碟形扁壳在均布载荷作用下的非线性局部稳定问题,即壳体的起始失稳区域,以及该区域与几何参数的关系等问题。
The Free-Parameter Perturbation Method together with Spline-Method are applied to study the nonlinear local stability of the dished shallow shell under uniformly distributed loads, i.
将自由参数摄动法与样条函数拟合法结合起来,研究了碟形扁壳在均布载荷作用下的非线性局部稳定问题,即壳体的起始失稳区域,以及该区域与几何参数的关系等问题。
The Free-Parameter Perturbation Method together with Spline-Method are applied to study the nonlinear local stability of the dished shallow shell under uniformly distributed loads, i.
应用推荐