盒图 百科内容来自于: 百度百科

定义

盒图(boxplot):摆弄数据离散度的一种图形。它对于显示数据的离散的分布情况效果不错。
在软件工程中,Nassi和Shneiderman 提出了一种符合结构化程序设计原则的图形描述工具?叫做盒图?也叫做N-S图。

简介

盒图是在1977年由美国的统计学家约翰·图基(John Tukey)发明的。它由五个数值点组成:
最小值(min),下四分位数(Q1),中位数(median),上四分位数(Q3),最大值(max)。也可以往盒图里面加入平均值(mean)。如图。下四分位数、中位数、上四分位数组成一个“带有隔间的盒子”。上四分位数到最大值之间建立一条延伸线,这个延伸线成为“胡须(whisker)”。
由于现实数据中总是存在各式各样地“脏数据”,也称为“离群点”,于是为了不因这些少数的离群数据导致整体特征的偏移,将这些离群点单独汇出,而盒图中的胡须的两级修改成最小观测值与最大观测值。这里有个经验,就是最大(最小)观测值设置为与四分位数值间距离为1.5个IQR(中间四分位数极差)。即
1、IQR = Q3-Q1,即上四分位数与下四分位数之间的差,也就是盒子的长度。
2、最小观测值为min = Q1 - 1.5*IQR,如果存在离群点小于最小观测值,则胡须下限为最小观测值,离群点单独以点汇出。如果没有比最小观测值小的数,则胡须下限为最小值。
3、最大观测值为max = Q3 + 1.5*IQR,如果存在离群点大于最大观测值,则胡须上限为最大观测值,离群点单独以点汇出。如果没有比最大观测值大的数,则胡须上限为最大值。

特点

通过盒图,在分析数据的时候,盒图能够有效地帮助我们识别数据的特征:
1、直观地识别数据集中的异常值(查看离群点)。
2、判断数据集的数据离散程度和偏向(观察盒子的长度,上下隔间的形状,以及胡须的长度)。
$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定