多变量信用风险判别模型主要包括以下几种:
(1)多元线性判定模型(Z-score模型)。其是财务失败预警模型,最早是由Altman(1968)开始研究的。该模型通过五个变量(五种财务比率)将反映企业偿债能力的指标、获利能力的指标和营运能力的指标有机联系起来,综合分析预测企业财务失败或破产的可能性。一般地,Z值越低,企业越有可能发生破产。具体模型为:
Z=V1X1+V2X2+…+VnXn
其中,V1、V2…Vn是权数,X1、X2…Xn是各种财务比率。根据Z值的大小,可将企业分为“破产”或“非破产”两类。在实际运用时,需要将企业样本分为预测样本和测试样本,先根据预测样本构建多元线性判定模型,确定判别Z值(Z值的大小可以作为判定企业财务状况的综合标准),然后将测试样本的数据代入判别方程,得出企业的Z值,并根据判别标准进行判定。此方法还可以用于债券评级、投资决策、银行对贷款申请的评估及子公司业绩考核等。
(2)多元逻辑模型(Logit模型)。其采用一系列财务比率变量来预测公司破产或违约的概率,然后根据银行、投资者的风险偏好程度设定风险警界线,以此对分析对象进行风险定位和决策。Logit模型建立在累计概率函数的基础上,不需要自变量服从多元正态分布和两组间协方差相等的条件。Logit模型判别方法先根据多元线性判定模型确定企业破产的Z值,然后推导出企业破产的条件概率。其判别规则是:如果概率大于0.5,表明企业破产的概率比较大;如果概率低于0.5,可以判定企业为财务正常。
(3)多元概率比回归模型(Probit回归模型)。其假定企业破产的概率为p,并假设企业样本服从标准正态分布,其概率函数的p分位数可以用财务指标线性解释。其计算方法是先确定企业样本的极大似然函数,通过求似然函数的极大值得到参数a、b,然后利用公式,求出企业破产的概率;其判别规则与Logit模型判别规则相同。
(4)联合预测模型。联合预测模型是运用企业模型来模拟企业的运作过程,动态地描述财务正常企业和财务困境企业的特征,然后根据不同特征和判别规则,对企业样本进行分类。这一模型运作的关键是准确模拟企业的运作过程,因此,它要求有一个基本的理论框架,通过这一框架来有效模拟企业的运作过程,从而能够有效反映和识别不同企业的行为特征、财务特征,并据此区分企业样本。