无尺度网络的概念是随着对复杂网络的研究而出现的。“网络”其实就是数学中图论研究的图,由一群顶点以及它们之间所连的边构成。在网络理论中则换一套说法,用“节点”代替“顶点”,用“连结”代替“边”。复杂网络的概念,是用来描述由大量节点以及这些节点之间错综复杂的联系所构成的网络。这样的网络会出现在简单网络中没有的特殊拓扑特性。
自二十世纪60年代开始,对复杂网络的研究主要集中在随机网络上。随机网络,又称随机图,是指通过随机过程制造出的复杂网络。最典型的随机网络是保罗·埃尔德什和阿尔弗雷德·伦伊提出的ER模型。ER模型是基于一种“自然”的构造方法:假设有n个节点,并假设每对节点之间相连的可能性都是常数0 < p < 1。这样构造出的网络就是ER模型网络。科学家们最初使用这种模型来解释现实生活中的网络。
ER模型随机网络有一个重要特性,就是虽然节点之间的连接是随机形成的,但最后产生的网络的度分布是高度平等的。度分布是指节点的度的分布情况。在网络中,每个节点都与另外某些节点相连,这种连接的数目叫做这个节点的度。在网络中随机抽取一个节点,它的度是多少呢?这个概率分布就称为节点的度分布。
在一般的随机网络(如ER模型)中,大部分的节点的度都集中在某个特殊值附近,成钟形的泊松分布规律(见图3)。偏离这个特定值的概率呈指数性下降,远大于或远小于这个值的可能都是微乎其微的,就如一座城市中成年居民的身高大致的分布一样。然而在1998年,Albert-László Barabási、Réka Albert等人合作进行一项描绘万维网的研究时,发现通过超链接与网页、文件所构成的万维网网络并不是如一般的随机网络一样,有着均匀的度分布。他们发现,万维网是由少数高连接性的页面串联起来的。绝大多数(超过80%)的网页只有不超过4个超链接,但极少数页面(不到总页面数的万分之一)却拥有极多的链接,超过1000个,有一份文件甚至与超过200万个其他页面相连。与居民身高的例子作类比的话,就是说大多数的节点都是“矮个子”,而却又有极少数的身高百丈的“巨人”。Barabási等人将其称为“无尺度”网络,所谓的无尺度,是从scale free翻译而来,scale就是指节点度的大小,free 是指虽然网络中大部分节点的度不高,但极少数节点的度不受任何限制,可以变得十分巨大。