[1] F. Liu , I. Turner and V. Anh, An Unstructured Mesh Finite Volume Method for Modelling Saltwater Intrusion into Coastal Aquifers, Korean J. Comput. & Appl. Math.,2002, 391-407. (EI 收录 )
[2] F. Liu , V. Anh and I. Turner, Numerical solution of the fractional-order Advection-Dispersion Equation, The Proceeding of An International Conference on Boundary and Interior Layers -Computational and Asymptotic Methods, Perth, Australia, 2002, 159-164.
[3] X. Cai and F. Liu, A class of conservative difference schemes for conservative equation with a small parameter, The Proceeding of an International Conference on Boundary and Interior Layers -Computational and Asymptotic Methods, Perth, Australia, 2002, 67-72.
[4] N. Su, F. Liu and V. Anh, Simulating seawater intrusion in aquifers using modified Fokker-Planck equation and Boussininesq equation subject to phase-modulated tidal waves, Advances in Statistic, Combinatories & Related Areas 2002, 320-331.
[5] L. Ding, S. Bhatia and F. Liu , Kinetics of adsorption on activated carbor: application of heterogeneous vacancy solution theory, Chem. Eng. Sci., 57, 2002, 3909-3928. ( SIC , EI 收录)
[6] F. Liu , I. Turner, V. Anh and N. Su, A two-dimensional finite volume unstructured mesh method for transient simulation of time-, scale-dependent transport in heterogeneous porous media, J. Appl. Math. Computing, 2003, 215-241. ( EI 收录)
[7] C. Please, F. Liu and D. McElwain, Condensed phase combustion traveling waves with sequential exothermic or endothermic reactions, Combustion Theory and Modelling, 7, 2003, 129-143. ( SIC , EI 收录 )
[8] F. Liu , V. Anh, I. Turner and P. Zhuang, Time fractional advection dispersion equation, J. Appl. Math. Computing, Vol. 13, 2003, 233-245. ( EI 收录)
[9] N. Su, F. Liu and V. Anh, Tides as phase-modulated waves in inducing periodic groundwater flow in coastal overlaying a sloping impervious base, Environmental Modelling & Software, 18, 2003, 937-942. ( SIC 收录)
[10] F. Liu , V. Anh and I. Turner, A two-Dimensional finite volume method for variable density flow and solute transport through saturated-unsaturated media, The proceeding of the International Symposium on Nonlinear Science and Application, Shanghai, ID0450 , 2003.
[11] F. Liu , V. Anh and I. Turner, Numerical solution of the space fractional Fokker-Planck Equation, J. Comp. and Appl. Math., 166 , 2004, 209-219. ( SIC , EI 收录)
[12] X. Cai and F. Liu , Uniform convergence difference schemes for singularly perturbed mixed boundary problems, J. Comp. and Appl. Math., 166 , 2004, 31-54. ( SIC , EI 收录)
[13] R. Lin and F. Liu , A high order approximation of fractional order ordinary differential equation initial value problem, Journal of Xiamen University (NATURAL Science), Vol.43, No.1, 2004, 25-30.
[14] S. Shen and F. Liu , A computational effective method for fractional order Bagley-Torvik equation, Journal of Xiamen University (NATURAL Science), Vol.45, No.3, 2004, 306-311.
[15] F. Liu , V. Anh, I. Turner and P. Zhuang, Numerical simulation for solute transport in fractal porous media, ANZIAM J., 45(E) 461-473, 2004. ( SIC , EI 收录)
[16] X. Lu and F. Liu , The explicit and implicit finite difference approximations for a space fractional advection diffusion equation, Computational Mechanics (CD-ROM), ID-120, 2004.
[17] X. Cai and F. Liu , Improvement of the fitted mesh methods by multi-transition points technique for singularly perturbed convection diffusion problem, Computational Mechanics (CD-ROM), ID-612, 2004.
[18] S. Shen and F. Liu , A fully discrete difference approximation for the time fractional diffusion equation, Computational Mechanics (CD-ROM), ID-79, 2004. [19] R. Lin and F. Liu , Analysis of fractional-order numerical method for the fractional relaxation equation, Computational Mechanics (CD-ROM), ID-362, 2004.
[20] T. Zheng, P. Zhuang, X. Cai and F. Liu , A Petrov-Galerkin method for singularly perturbed time-dependent convection-diffusion equations with non-smooth data, Computational Mechanics (CD-ROM), ID-614, 2004.
[21] H. Zhao and F. Liu , A class of Petrov-Galerkin schemes for singularly perturbed parabolic problems with a discontinuous convection coefficient, Computational Mechanics (CD-ROM), ID-615, 2004.
[22] F. Huang and F. Liu , The time fractional diffusion equation and advection-dispersion equation, ANZIAM J.,46, 2005, 1-14. ( SIC , EI 收录)
[23] N. Su, G. Sander, F. Liu and V. Anh, Similarity solution of Fokker-Planck equation with time- and scale-dependent dispersivity for solute transport in fractal porous media, Applied Mathematical Modelling, 2005, to appear. ( SIC , EI 收录)
[24]H. Huang and F. Liu , The space-time fractional diffusion equation with Caputo derivatives, J. Appl. Math. Computing, 2005, to appear. ( EI 收录)
[25]H. Huang and F. Liu , The fundamental solution of the space-time fractional advection equation, J. Appl. Math. Computing, 2005, to appear. ( EI 收录)
[26]Y. Hu and F. Liu , Numerical Methods for a Fractional-Order Control System, Journal of Xiamen University (NATURAL Science), 2005, to appear.
[27]X. Lu and F. Liu , Time Fractional Diffusion-Reaction Equation, Numerical Mathematics: A Journal of Chinese Universities, 2005, to appear.
[28] F. Liu , V. Anh, I. Turner, K. Bajracharya, W. Huxley and N. Su, A finite volume simulation model for saturated-unsaturated flow and application to Gooburrum, Bundaberg, Queensland, Australia, Applied Mathematical Modelling, (2005), to appear. ( SIC , EI 收录)