齐次解 homogeneous solution ; complementary solution
特解和齐次解 Particular and homogeneous solution
新的齐次解 new homogeneous solution
方程的解由齐次解 hom-ogeneous solution
齐次通解 homogeneous general solution
非齐次通解 non homogeneous particular solution
非齐次特解 non-homogeneous particular solution
齐次的横分解 homogeneous bar resolution
非齐次的横分解 inhomogeneous bar resolution
余函数(齐次解)对应于暂态,特解对应于稳态。
Eg. The complementary function corresponds to the transient, and the particular solution to the steady state.
这样,轴对称正交异性圆环壳的齐次解第一次有了达到薄壳理论精度的完全的渐近展开。
Thus, the fully asymptotic expansion of the homogeneous solution within the accuracy of theory of thin shells is obtained.
给出了一个判定齐次线性方程组存在全非零解的充分必要条件。
We present a necessary and sufficient conditions of homogeneous linearity equations existing all-nonzero solution.
应用推荐