本文研究ID-因子临界图的度和条件,得到使得图G是ID-因子临界图的任意两个不相邻的顶点的度和的下界,同时说明这些结果是最好可能的。
Degree sum conditions of ID-factor-critical graphs are studied. A lower bound for the degree sum of any two nonadjacent vertices such that G is ID-factor-critical is obtained, and the bound is sharp.
这里描述的KML仅为美国就使用了数以千计的多边形顶点,因此如果要在全球呈现或超越国家级的精确度,则可能需要速度更快的处理器。
The KML described herein USES tens of thousands of polygon vertices for the United States alone, so faster processors may be required for global rendering or precision beyond the state level.
算法还结合临近边界点合并等原则,删除对表达场景几何特征重要度低的顶点。
To further improve the simplification, vicinity vertices on the border of the area are merged.
应用推荐