大气衰减的辐射度估计 Radiometric Estimation of Atmospheric Attenuation
The approach isbased on Ginzburg-Landau approximation and energy decay estimates.
其主要技巧是运用了Ginzburg-Landau逼近和能量衰减估计的方法。
参考来源 - 至多四维加权LandauWe show the decay rate of the solutions of the equation.
这章我们给出了上述方程解的能量衰减估计。
参考来源 - 一类kirchhoff方程和一类梁的横振动方程整体解的研究·2,447,543篇论文数据,部分数据来源于NoteExpress
借助这一新方法,得到了非线性系统指数稳定的充分条件,并给出了解的指数衰减估计。
With this new approach, some sufficient conditions for the exponential stability of nonlinear systems are obtained, and the exponential decay estimation oft he solution is also proposed.
在能量空间中,当梁的能量非一致衰减时,由初始条件得到了梁的能量多项式衰减估计。
In the case of nonuniform decay in the energy space, we derive explicit polynomial decay estimates valid for regular initial data.
本文讨论始边值问题(1)—(3),在一般条件下,证明解一致有界,并得出衰减估计。
This paper discusses initial boundary value problem (1) - (3). Under somewhat more general condition, the uniform boundness of the solutions is demonstrated and the decay estimate is obtained.
应用推荐