提出一种基于核主元分析(KPCA)和多级神经网络集成的汽轮机故障诊断方法。
One new method for fault diagnosis of steam turbine based on kernel principal component analysis (KPCA) and multistage neural network ensemble was proposed.
为此提出了一种多向核主元分析(MKPCA)算法用于间歇过程的建模与在线监测。
A method based on multiway kernel principal component analysis (MKPCA) was proposed to capture the nonlinear characteristics of normal batch processes.
结合核主元分析与支持向量机的特点,提出了一种基于核主元分析与支持向量机的人脸识别方法。
By integrating the characteristics of KPCA and SVM, a face recognition method based on these two algorithms is presented.
应用推荐