The present paper is focused on the prediction of oil and gas by means of neural network computing technique, and on the analysis of possible origins of pore_fluid pressure.
选用神经网络计算技术对松辽盆地深层孔隙流体压力进行了预测,并对孔隙流体压力的可能成因进行了分析。
The system consists of graphic user's interface module, sample processing module, neural network structural module and neural network computing module.
该系统主要由以下模块构成:用户界面模块、网络模型模块、样本处理模块、神经网络计算模块以及神经网络训练结果显示模块。
The application shows that the algorithms simplify the computing complexity of process neural networks, and raise the efficiency of the network learning and the adaptability to real problem resolving.
应用表明,算法简化了过程神经网络的计算复杂度,提高了网络学习效率和对实际问题求解的适应性。
应用推荐