This paper mainly introduces the TAN classifier model, its building method and class method.
主要介绍了贝叶斯网络分类器中的TAN分类器的模型、构造方法及分类方法。
The results prove that TAN classifier has perfect classification capability and higher classification accuracy.
实验结果表明TAN分类器具有较好的分类性能和较高的分类精度。
TAN classifier extends the structure of Naive Bayes classifier by adding augmenting arcs that obey certain structural restrictions.
TAN分类器按照一定的结构限制,通过添加扩展弧的方式扩展朴素贝叶斯分类器的结构。
应用推荐