...份分析之方法,做为股票技术指标的筛选并利用支援向量回归(Support Vector Regression)及支援向量分类(Support Vector Classify)之方法运用于台湾股票市场股价波动之预测,其实验结果皆达六成以上,甚至有些股票公司之预测正确更是高达七成,显示SVMs方法运用...
基于16个网页-相关网页
This paper mainly make research on classify methods based on statistical theory, support vector machine (SVM), and feature extraction method-wavelet transform, and using them in human face detection.
本文主要研究目前较为流行的基于统计学习理论的分类方法——支持向量机方法(SVM),以及小波变换提取特征的方法,将其用于人脸检测。
To solve the problem that support vector machine(SVM) can only classify the small samples set, a new algorithm which applied SVM to density clustering is proposed.
为了解决支持向量机的分类仅应用于较小样本集的问题,提出了一种密度聚类与支持向量机相结合的分类算法。
The way of fault Diagnoses based on Support Vector Machine has a simple model compared with the traditional method. It also has great ability to classify, and the best generalization.
与传统的故障诊断方法相比,基于支持向量机的故障诊断方法具有模型简单、分类能力强、推广能力好等特点。
应用推荐