go top

spectral geometry

  • 谱几何

网络释义专业释义英英释义

  谱几何

...课_论文_学海网 关键词:黎曼流形;谱几何;Laplace算子;特征值 [gap=458]Keywords : Riemannian manifold; spectral geometry; Laplacian operator;eigenvalue ...

基于90个网页-相关网页

  • 谱几何 - 引用次数:1

    Laplace matrices of graphs are closely related to the Laplacian, the second order differential operator. This relation yields an important bilateral link between the spectral geometry of Riemannian manifolds and graph theory.

    图的Laplace矩阵与二阶微分算子Laplacian之间的紧密联系使得在黎曼流形的谱几何与图论之间建立了一个重要的双向联系。

    参考来源 - 拉普拉斯矩阵和蕴含幂零符号模式

·2,447,543篇论文数据,部分数据来源于NoteExpress

Spectral geometry

  • abstract: Spectral geometry is a field in mathematics which concerns relationships between geometric structures of manifolds and spectra of canonically defined differential operators. The case of the Laplace–Beltrami operator on a closed Riemannian manifold has been most intensively studied, although other Laplace operators in differential geometry have also been examined.

以上来源于: WordNet

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定