pole-model 杆系模型
all-pole model 全极点模型
two-pole model 二极点模型
two pole model 二阶极点模型
zero-pole model 零极点模型
multi-pole model 多极模型
Growth Pole Model 增长极模式
single pole model 单极点模型
parallel-pole model 平行杆模型
dominant pole model 主极点模型
By using full pole model, we obtained speech signal LPC, then deduced it's LPCC, and we used the LPCC difference to describe speaker's track dynamic movement.
通过应用全极点模型,提取语音信号的线性预测系数,并推导出其倒谱系数,获得线性预测倒谱差分,用以描述说话人声道的动态变化。
In this paper, we use full pole model to obtain speech signal LPC, then deduce it's LPCC, and we use the LPCC difference to describe speaker's track dynamic movement.
本文应用全极点模型,提取语音信号的线性预测系数,并推导出其倒谱系数,获得线性预测倒谱差分,用以描述说话人声道的动态变化。
The other methods include: The conventional method of spectrogram parameters, the zero-pole model and the fractal method, the latter two were proposed by the present authors before.
这些方法包括:传统的声谱参数法及以前提出的零极点模型法及分形分析法。
应用推荐