This paper introduced a new feature selection method, which first used clustering to reduce redundancy among features and then used Information Gain to choose good features.
针对这一问题,提出了一种基于聚类的特征选择方法,先使用聚类的方法对特征间的冗余性进行裁减,然后使用信息增益的方法选取类别区分能力强的特征。
The reason of difference is analyzed and a new method named Combined Feature Selection is put forward.
分析了产生差异的原因,并提出一种适合于中文环境的特征选取方法:组合特征选取方法。
With regard to the problem that original feature in image classification is mass and redundancy, a new image feature selection method was presented.
针对目前图像识别中原始特征数量大、不相关特征多以及冗余等现象,提出了一种图像特征选择方法。
应用推荐