In the model, different hu- manized senses are simulated by multiple classifier systems. Consequently, SoftMan can perform multi-sense coopera- tive classification on its perceptive objects.
该模型通过多分类器系统模拟人的不同感觉,从而实现"软件人"对感知对象的多感觉协同分类。
参考来源 - “软件人”感知系统的协同分类模型研究 in C·2,447,543篇论文数据,部分数据来源于NoteExpress
Since multiple classifier systems(MCS) can improve the performance of classification, the technique has been widely used in various fields of pattern recognition.
多分类器组合方法可以在一定程度上弥补单个分类器的不足,提高分类性能,因此,它在模式识别领域得到广泛的应用。
Since multiple classifier systems can to some extent improve the performance of classification, the technique has been widely used in various fields of pattern recognition.
多分类器系统能够在一定程度上弥补单个分类器的缺陷,因此它在模式识别中得到了广泛的应用。
The experiments on UCI Machine Learning Repository prove that, compared to existing measures, EPD shows stronger ability in predicting the performance of multiple classifier systems.
对UCI机器学习数据库的实验证明,相对于其它方法,EPD方法对多分类器系统性能的预测能力更强。
应用推荐