Summarize the kernel parameter selection methods, and compare their effecitaveness through experimental validation.
4.总结了核参数选择的多种方式,并通过实验验证比较了各种选择方式的效率。
参考来源 - 核函数的参数选择·2,447,543篇论文数据,部分数据来源于NoteExpress
The selection of the kernel function parameter and error penalty factor affected the precision of the support vector machine (SVM) significantly.
核函数参数和误差惩罚因子的选择对支持向量机模型(SVM)的精度有较大影响。
In the paper, GBGM-GA is seen the optimization technique combining KPCA and GA, and is suitable to the optimization selection of kernel function parameter.
本文采用高斯变异遗传算法作优化技术,实现了KPCA和GA的集成,适合核函数参数的优化选择。
Finally, the construction of discrete scaling and wavelet kernels, the kernel selection and the kernel parameter learning are discussed.
最后讨论了离散尺度与小波核函数的构造,核函数选择与核参数学习。
应用推荐