当前主要采用的是functional differential equations(泛函微分方程)的数学框架。读者可能也会注意到,目前关于时滞系统稳定性分析的文献有一部分标题就是泛函微分方程(如Peet,2006)。
基于20个网页-相关网页
Theory of Functional Differential Equations 泛函数分方程理论
Volterra functional differential equations Volterra泛函微分方程
second order functional differential equations 二阶泛函微分方程
logistic type functional differential equations logistic型泛函微分方程
delay functional differential equations 时滞泛函微分方程
stiff functional differential equations 刚性泛函微分方程
linear functional differential equations 线性泛函微分方程
The oscillation of neutral functional differential equations has important implications in both theory and application.
中立型泛函微分方程的振动性在理论和应用中有着重要意义。
参考来源 - 具有正负系数的二阶非线性中立型方程的非振动准则This problem has attracted considerable attention recently. Time-delay systems are infinite-dimensional systems described by functional differential equations.
近年来对此类问题的研究已经越来越引起了人们的关注,由于时滞系统是用泛函微分方程描述的无穷维系统,因此对于时滞系统的稳定性分析和控制算法设计都是非常困难的。
参考来源 - 受扰时滞系统的最优控制问题研究·2,447,543篇论文数据,部分数据来源于NoteExpress
The study of iterative dynamical systems involves iterative functional differential equations.
对迭代动力系统的研究必然涉及迭代泛函微分方程问题。
Therefore, it is of great theoretical and practical value to research functional differential equations.
因此对泛函微分方程的研究,不但有重要的理论价值,而且有实用价值。
In this paper, oscillation criteria of solutions for a certain partial functional differential equations are obtained.
本文给出一类双曲偏泛函微分方程解的振动准则。
应用推荐