feature-level fusion recognition 特征层融合识别
feature level image fusion 特征级多传感器图像融合
feature level data fusion 特征层数据融合
feature-level information fusion 特征级信息融合
The three levels of image fusion (pixel-level fusion, feature-level fusion, and decision-level fusion) are discussed in detail.
对图像融合的三个层次(像素级融合、特征级融合和决策级融合)进行了深入细致的研究。
参考来源 - 多传感器图像融合方法研究The feature-level fusion could realize data condensation and is convenient for real-time disposal. Consequently, a method of faults diagnosis for power electronic circuits based on neural network feature-level fusion is proposed.
利用特征层融合可实现数据压缩,便于实时处理等优点,提出了一种基于神经网络特征层融合的电力电子电路故障诊断方法。
参考来源 - 基于小波变换与神经网络的电力电子电路故障诊断研究·2,447,543篇论文数据,部分数据来源于NoteExpress
From the abstract level, image fusion can be divided into: pixels-level fusion, feature-level fusion and decision-level fusion.
图像融合从抽象层次上可分为:像素级融合、特征级融合和决策级融合。
We study the algorithms of feature-level fusion based on the viewpoint of dependence and independence multi-variant data analysis, respectively.
首先从多元数据分析的角度,研究了基于相关性的多元数据分析和基于独立性的多元数据分析的特征融合方法。
Using the strategy of feature-level fusion and decision-level fusion against the fusion of hands characteristics and expression characteristics, and analyzing the experimental results.
分别采用特征层融合和决策层融合的策略对手部特征与表情特征进行融合,并对实验结果进行了分析。
应用推荐