Ergodic Theory and Dynamical Systems 遍历理论和动力系统
Dynamical systems and ergodic theory 动力系统与遍历理论 ; 动力学和各态历经理论
Lindenstrauss, the ICM citation says, "has made far-reaching advances in ergodic theory," which studies the statistical behavior of dynamical systems.
国际数学联盟在颁奖辞中称Lindenstrauss在遍历理论方面取得了意义深远的进展,遍历理论是用于研究动力系统统计行为的数学分支。
Roughly speaking, dynamical systems consist of differential dynamical system, topological dynamical system, infinite dimensional dynamical system, complex dynamical system and ergodic theory etc.
今天的动力系统大致可分为微分动力系统、拓扑动力系统、无穷维动力系统、复动力系统、遍历论等方向。
应用推荐