做三次样条曲线时,需要解三对角矩阵(Tridiagonal Matrices)。常用解法为Thomas Algorithm,又叫The tridiagonal matrix algorithm (TDMA)。
基于12个网页-相关网页
periodic tridiagonal matrices 周期三对角矩阵
the block-tridiagonal matrices 三对角块矩阵
Inverses of tridiagonal matrices 三对角矩阵的逆
tridiagonal period matrices 周期三对角矩阵
By means of classical analytic method and combinatorial computational technique, this dissertation investigates some eigenvectors of tridiagonal matrices of Sylvester type, binomial determinantal formulae,generalizations of Cauchy and Vandermonde determinants as well as evaluations of determinants of Pascal matrices.
本文利用经典分析方法和组合计算技巧,研究Sylvester型三对角矩阵的特征向量、二项式系数行列式、Pascal矩阵行列式以及Cauchy行列式和Vandermonde行列式的推广形式。
参考来源 - 经典组合序列的行列式计算·2,447,543篇论文数据,部分数据来源于NoteExpress
The inverse of a class of block tridiagonal matrices is investigated.
讨论了一类块三对角矩阵的求逆问题。
For a general banded matrix, discuss the sparsity pattern of the Q and R matrices from the QR decomposition of symmetric and non-symmetric tridiagonal matrices.
对于一般的带状矩阵,详述对对称与非对称三对角化矩阵做QR分解后,Q矩阵与R矩阵的稀疏元素分布型态。
In this paper, we give the estimates for the upper and lower bounds on the inverse elements of strictly diagonally dominant periodic tridiagonal matrices, and improve the latest findings.
本文给出了严格对角占优周期三对角矩阵逆元素上界和下界的估计,改进了一些学者近期的研究结果。
应用推荐