If the conditions of the theorems are shown to be true, then we can use the theorem to establish the truth of the theorem's result for our program.
如果定理的条件被证明为真,则我们可以使用此定理来确定我们的程序的定理结果的正确性。
We establish a Lagrange multiplier theorem for strict efficiency in convex settings and express strict points as saddle points of an appropriate Lagrangian function.
讨论凸多目标最优化问题的严有效解,建立了拉格朗日乘子定理,并把严有效解表示为一个适当的拉格朗日函数的鞍。
At last, we establish systems of coincidence theorem and system of minimax theorems in G-convex under weaker assumptions. Our results generalize the corresponding results in recent literature.
最后,在较弱的假设条件下,讨论了G -凸空间中的重合点组定理与极大极小组定理,从而推广了近期文献的相关结论。
应用推荐