The chaos search based hybrid particle swarm optimization (PSO) algorithm is proposed in the paper to avoid the premature phenomenon of PSO, which is applied into the reactive power optimization.
应用粒子群优化算法(PSO)求解电力系统无功优化问题,提出基于混沌搜索的混合粒子群优化算法,以克服P SO容易早熟而陷入局部最优解的缺点。
Numerical examples illustrate that the present method possesses both good capability to search global optima and far higher convergence speed than that of chaos optimization method.
算例表明,当混沌搜索的次数达到一定数量时,混合优化方法可以保证算法收敛到全局最优解,且计算效率比混沌优化方法有很大提高。
The characteristics of BP neural network and chaos optimal method are analyzed. By integrating chaos optimal method with gradient-decline method, an optimal method of combination search is created.
分析了BP神经网络和混沌优化的特点,并将混沌优化方法和梯度下降法结合起来构成一种新的组合搜索优化方法。
应用推荐