The ant colony optimization algorithm is a novel simulated evolution algorithm featuring a robust global searching ability.
蚁群算法是一种模拟进化算法,具有很强的全局搜索能力。
Ant Colony optimization (ACO) is a new-style simulating evolution algorithm. The behavior of real ant colonies foraging for food is simulated and used for solving optimization problems.
蚁群算法是一种新型的模拟进化算法,它通过模拟蚁群在觅食过程中寻找最短路径的方法来求解优化问题。
Simulated annealing mechanism is introduced to do local-search for the best chromosome in every generation of the evolution process. This improves the convergence of the algorithm.
算法引入模拟退火机制,在遗传进化过程中的每一代,对最优个体进行邻域局部寻优,利用模拟退火进一步改善算法的收敛性能。
应用推荐