In this paper, We mainly do researches on using chaotic neural network based on simulated annealing (CSAN) to solve TSP.
本文主要研究混沌模拟退火神经网络(CSAN)在求解tsp中的应用。
Compared result shows that integration of simulated annealing BP neural network has better performance, and is more accurate on the gear fault diagnosis.
结果对比表明,融合的模拟退火bp神经网络具有更好的性能,对齿轮故障的诊断精度更高。
The mean field annealing approach is a new neural network model, which improves simulated annealing approach greatly.
均场退火方法既可以看作是一种新的神经网络计算模型,又可视为是对模拟退火的重大改进。
应用推荐