By the improved BP and RBF neural networks, short-term electric load is forecast and training (convergence) rate and forecasting precision are analyzed.
利用改进的BP网络和RBF网络进行了短期电力负荷预测,并对训练的收敛速度和预测精度进行了分析。
Calculating results show that the parameter optimization method can improve the precision of the satellite clock error short-term predicating.
计算结果表明,参数优化法可以提高卫星钟差短期预报的精度。
Therefore, how to improve the forecasting precision is the emphasis on the study of short-term load forecasting.
因此,关于如何提高预测精度的问题,一直是短期负荷预测研究的重点问题。
应用推荐