A kind of ordinary difference equation that can be transferred to Euler equation, often appears in polar coordinates solution of elastic problems.
在弹性力学问题的极坐标解答中,经常会遇到一类可转化为欧拉方程的常微分方程。
The displacement solution is constructed by applying the methods of complex function and multi polar coordinates system.
利用复变函数和多极坐标方法构造了问题的位移解。
In 2d polar coordinates, the exact solution to the Schrdinger equation was used to calculate the perturbation integral in a parabolic confinement potential.
受限势采用抛物形势,在二维平面极坐标下,用薛定谔方程的精确解析解进行计算。
应用推荐