With strong noise, the performance of the artificial neural network correction is limited.
但其在既有加性噪声 ,又有乘性噪声时校正效果难以令人满意。
The traditional neural network correction has a good adaptivity to the noise. But with a stronger low frequency space noise, the correction effect is very poor.
传统的神经网络非均匀性校正算法对噪声具有较好的自适应性,但当空间低频噪声较大时,校正效果明显下降。
The results validate more validity of nonlinear error correction model on the wavelet neural network than linear vector autoregressive model, and forecast validly the nonlinear economy system.
研究证明,小波神经网络所建立的非线性误差校正模型有较好的预测效果,能够有效地预测非线性经济系统。
应用推荐