...考虑的是如何在模型中处理货币的题目,常用的方法有两种,第一种方法是把实际货币余额直接放进效用函数(money in the utility,MIU),其理由是货币能缩短交易时间,进而可以增加休闲时间而使消费者获得效用;第二种方法则是预付现金约束( ...
基于4个网页-相关网页
Money-In-the-Utility Model 货币效用模型
Money in the utility function 入效用函数 ; 效用函数中的货币模型
Money in the Utility Funetion 货币效用模型
money-in-the-utility function model 货币内在效用模型
In 1738, Daniel, trying to solve a problem in probability theory and the theory of gambling by use of the calculus, stumbled on the concept of the law of diminishing marginal utility of money.
在1738年,丹尼尔试图用微积分来解决一个概率论和赌博理论里的问题,无意间却发现了货币的边际效用递减法则的概念。
After coming upwith this egregious fallacy, Bernoulli topped it by blithely assuming thatevery individual's marginal utility of money moves in the very same constantproportion, b.
更为糟糕的,在提出这个令人震惊的谬论后,伯努利又漫不经心地假设说,每个人的货币的边际效用也以同样的常量b变化。
The exact shape of the curve is subject to discussion, but the point of diminishing marginal utility is that, as you get more and more money, the increment in utility for each extra dollar diminishes.
这条曲线的确切形状还有待讨论,但是边际效用递减规律的重点在于,你得到的钱越多,每额外的一美元的增长效用会相对减小
The exact shape of the curve is subject to discussion, but the point of diminishing marginal utility is that, as you get more and more money, the increment in utility for each extra dollar diminishes.
这条曲线的确切形状还有待讨论,但是边际效用递减规律的重点在于,你得到的钱越多,每额外的一美元的增长效用会相对减小
应用推荐