Neural network BP training algorithm based on gradient descend technique may lead to entrapment in local optimum so that the network inaccurately classifies input patterns.
基于梯度下降的神经网络训练算法易于陷入局部最小,从而使网络不能对输入模式进行准确分类。
The trackability limitation of current gradient algorithm is discussed. A new algorithm, named variable parameter gradient estimation algorithm with local polynomial approximation is proposed.
本文分析了梯度辨识算法跟踪时变系统的缺点,提出了一种新的基于局部多项式逼近的变参数梯度估计算法。
The traditional fuzzy C-means (FCM) algorithm is an optimization algorithm based on gradient descending. it is sensitive to the initial condition and liable to be trapped in a local minimum.
传统的模糊c -均值(FCM)聚类是一种基于梯度下降的优化算法,该方法对初始化较敏感,且易陷入局部极小。
应用推荐