Using this method, kernel function could be flexibly chosen to estimate sample point's density values according to different locating application scenes.
推广后的定位方法,可根据具体的目标定位场合,灵活选择核函数对样本点进行核密度估计。
The background samples are chosen by thresholding inter-frame differences, and the Gaussian kernel density estimation is used to estimate the probability density function of background intensity.
通过相隔固定的帧差值阅值化得到背景样本值,并采用高斯核密度估计方法计算背景灰度的概率密度函数。
应用推荐