... between curves :曲线间之面积 in polar coordinates :极坐标表示之面积 of a sector of a circle :扇形之面积 ...
基于1个网页-相关网页
Fourier series in polar coordinates Fourier级数的极座标计算
divergence in polar coordinates 极坐标散度
re-sampling in polar coordinates 极坐标重采样
Kalman filtering in polar coordinates 极坐标下卡尔曼滤波算法
polar coordinates in the plane 平面极坐标
polar coordinates in plane [数] 平面极坐标
Anyway, that is double integrals in polar coordinates.
这是极坐标系下的二重积分。
OK, the right way to do this will be to integrate it in polar coordinates.
这道题最合适的方法,应该在极坐标系里面计算。
The claim is we are able, to do double integrals in polar coordinates.
这也就说明了,可以用极坐标做二重积分。
Another reason I wanted to point this out in terms of the polar coordinates that we're using, is I think they're actually flipped from what you're used to seeing in physics.
另一个我想指出,我们采用极坐标的原因是,我认为它们实际上是,从你们习惯于看到的物理学中出来的。
In terms of the Schrodinger equation, we now can write it in terms of our polar coordinates here.
在薛定谔方程中,我们现在可以用,极坐标的方式来表示了。
应用推荐