With increase of mass flow rate, solid-gas ratio increases first and then decreases.
随着煤粉的输送流量的增大,固气比先增大后减小。
Cell model is employed to set up the mass balance of 8 gas components, solid flow, carbon flow and total energy balance.
建模采用“小室模型”方法,将气化炉分为多段,分别建立8种气体成分、固体和碳质量平衡以及总体能量平衡。
The result shows improved BP neural network can successfully forecast solid mass rate under different experimental conditions and solid mass rate contour diagram at different gas flow is plotted.
结果表明,BP网络能对不同实验条件下的固体质量流率进行较好的预测。
应用推荐