The distance definition for mixed attribute, the outlier factor measured outlier degree of an object and unsupervised intrusion detection method are proposed.
提出了一种适用于混合属性的距离定义和度量对象异常程度的异常因子,由此提出了一种无指导的入侵检测方法。
The algorithm can indicate the degree of outlier with the local deviate factor, so the outlier can be identified exactly and the precision is measurable.
同时用局部偏离指数指示离群点的偏离程度,又具有识别精度高和偏离程度可度量的优点。
It uses local outlier mining method to count the Local Outlier Factor(LOF) of the outlier candidated object and detects anomaly attacks.
采用局部离群挖掘方法计算离群候选对象的离群因子,检测出异常攻击。
应用推荐