Using the distribution parameter method, established a differential equation, and made its discrete solutions.
方法采用分布参数法建立微分方程,并进行离散求解。
New method of parameter estimation for time varying non linear distributed systems is proposed in term of orthogonality of orthogonal polynomial and differential operation matrix.
利用正交多项式序列的正交性及微分算子矩阵,论述了时变非线性分布参数系统参数估计的正交多项式法。
This paper proves that the quasilinearization method for parameter estimation of ordinary differential equation in chemical reaction kinetics essentially belongs to the region of Gauss-Newton method.
本文通过理论推导,证明在反应动力学常微分方程参数估值中所采用的拟线性化法在本质上仍然属于高斯—牛顿法的范畴。
应用推荐