Be different from other control methods, differential geometry deals with nonlinear problems in substance.
不同于其他控制方法,微分几何控制理论是本质上对非线性系统进行处理的方法。
The methods used in this dissertation include matrix, algebra as well as differential geometry theory.
本文采用的研究方法有矩阵方法,代数方法和微分几何理论。
Similar to methods of differential geometry theory, equivalent theorem between differential algebraic systems passivation and KVP property was used by introducing m derivative.
利用类似微分几何理论的方法,通过引入微分代数系统的m导数,利用微分代数系统无源性定义以及kvp特性的等价定理。
应用推荐