In order to improve the training efficiency, an advanced Fuzzy Support Vector Machine (FSVM) algorithm based on the density clustering (DBSCAN) is proposed.
为了提高模糊支持向量机在数据集上的训练效率,提出一种改进的基于密度聚类(DBSCAN)的模糊支持向量机算法。
To solve the problem that support vector machine(SVM) can only classify the small samples set, a new algorithm which applied SVM to density clustering is proposed.
为了解决支持向量机的分类仅应用于较小样本集的问题,提出了一种密度聚类与支持向量机相结合的分类算法。
This approach exploits unlabeled data for efficient clustering, which is applied in the classification with support vector machine (SVM) in the case of small-size training samples.
该方法利用大量的未标识数据进行有效聚类,并将聚类结果用于小样本情形下的支持向量机分类。
应用推荐