Microsoft Word - 35-p0257.DOC Key words: indium; leaching rate; ITO waste target; BPNN model [gap=18112]关键词:铟;浸出率;ITO废靶;人工神经网络模型
基于1个网页-相关网页
The BPNN model of Bayesian regularization method was adopted to create the adaptivity and generalization of BPNN.
文中采用贝叶斯正则化与BP网络结合的方法,建立动态前馈校正模型。
The constringency speed and generalization ability of optimized BPNN model are better than that of simple BPNN model, and the simulation result is close to reality.
遗传算法优化的BP神经网络在收敛速度和泛化能力上都较简单的BP神经网络要好,模拟结果更接近于真实值。
After the comparison of optimized BPNN model and simple BPNN model, the result shows that, it is completed feasible to use optimized BPNN model in cultivated land classification work.
将优化后的BP神经网络模型和简单的BP神经网络进行比较,实验结果表明,基于遗传算法优化的BP神经网络模型在耕地分等评价工作中的应用完全可行。
应用推荐