The paper studies the nonlinear programming problem with linear constraints. Based on its optimality conditions, a neural network for solving it is proposed.
研究了线性约束的非线性凸规划问题,基于最优性的充要条件,提出了求解它的一个神经网络。
It is proved that the optimality conditions are also sufficient if the objective function is a convex function of the plastic limit bending moment.
当目标函数是塑性极限弯矩凸函数时,证明了这一最优性条件也是最优解的充分条件。
Constructing a simple network and converting the allocation problem into the min-cost max-flow in the network, we have developed an optimal algorithm for the allocation problem.
我们构造了一个简单网络,将布点问题转化为该网络中的最小费用最大流问题,从而给出了求解布点问题的最优性算法。
应用推荐