高等数学课堂教学中问题情境的设置是启发式教学思想应用于实际的中间桥梁,是教学中的重要环节。
Question circumstances setting in the course of Higher Mathematics teaching is a key link between the teaching ideas of elicitation method and practical application.
本文通过对“有限与无限”、“直与曲”、“常量与变量”的剖析,揭示了高等数学中解决这些矛盾的辩证思想和方法。
Analysing "limited and unlimited", "straight and curve" and "constant and variable", the article discovers contradict dialectic ideology and methods in high mathematics.
在教学中注重对学生建模思想的培养应成为高等数学教学改革的一个重要方向。
It must become an important direction for higher mathematics teaching to develope students' concept of mathematics model-building.
应用推荐