高斯—牛顿迭代法的基本思想是使用泰勒级数展开式去近似地代替非线性回归模型,然后通过多次迭代,多次修正回归系数,使回归系数不断逼近非线性回归模型的最佳回归系数,最后使原模型的残差平方和达到最小。高斯—牛顿法的一般步骤为: (1)初始值的选择。其方法有三种,一是根据以往的经验选定初始值;二是用分段法求出初始值;三是对于可线性化的非线性回归模型,通过线性变换,然后施行最小平方法求出初始值。 (2)泰勒级数展开式。设非线性回归模型为: i=1,2,…,n (3-68) 其中r为待估回归系数,误差项 ~N...