本文对RNA分子建立树形模型,利用频繁子树挖掘算法挖掘RNA二级结构中的公共拓扑模式。
The paper builds tree-model of RNA molecules and utilizes frequent sub tree mining algorithm to mine common topological patterns among RNA secondary structures.
提出了一个新的数据库存储结构AF P -树,利用它来挖掘频繁模式。然后利用项目之间的相互关联做出推荐。最后举例说明了此推荐系统的处理过程。
It proposes a new database store structure AFP-Tree for mining frequent patterns, makes recommendations by exploring associations between items, exemplifies the approach on real data.
此外,由于树结构在挖掘频繁项目时不需要产生频繁项集及对这些频繁项进行测试而被广泛应用于数据挖掘中。
Besides, tree structure is extensively adopted in data mining because it doesn't need to generate the frequent items and test them.
应用推荐