...rly separable case )、线性支持向量机(linear support vector machine)及非线性支持向量机(non-linear support vector machine)。 学习方法包括: 硬间隔最大化(hud margin maximization)、软间隔最大化(soft margin maximization)、核技巧(kernel trick)。
基于8个网页-相关网页
支持向量机是一种基于统计学习理论的新型机器学习方法,它可以被广泛地用于非线性系统建模。
Support vector machine (SVM) is a brand-new machine learning technique based on statistical learning theory. It is an ideal facility for modeling of various nonlinear systems.
支持向量机(SVM)作为一种新型的非线性建模方法,适合于处理小样本和高维数的建模问题。
Support vector machines (SVM) is a new nonlinear modeling method which is suitable for solving small samples and high dimension modeling problems.
本文基于虚拟目标值反馈调整(VRFT)方法的思想,利用支持向量机(SVM),给出一种非线性控制器直接设计方法。
Motivated by the virtual reference feedback tuning (VRFT) method, we propose a new direct nonlinear controller design method using virtual reference (VR) and support vector machine (SVM).
应用推荐